

Clinical determinants of thrombin generation measured in presence and absence of

platelets – results from the Gutenberg Health Study

Marina Panova-Noeva¹, Miriam Michler-Abo Mustafa¹, Maren Paul¹, Andreas Schulz², Henri M. Spronk³, Dagmar Laubert-Reh², Frederic Haydl¹, Natalie Arnold², Jürgen Prochaska¹, Manfred Beutel⁴, Norbert Pfeiffer⁵, Thomas Münzel^{6,7}, Karl J. Lackner^{8,7}, Hugo ten Cate³, Philipp S. Wild^{1,2,7}

¹ Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Germany; ² Preventive Cardiology and Preventive Medicine, Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; ³ Laboratory for Clinical Thrombosis and Hemostasis, Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, the Netherlands; ⁴ Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Mainz, Germany; ⁵ Department of Ophthalmology, University Medical Center for Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; ⁷ DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany; ⁸ Institute for Clinical Chemistry and Laboratory Medical Center of the Johannes Gutenberg-University Mainz, Germany; Mainz, Germany; ⁹ DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany; ⁹ Institute for Clinical Chemistry and Laboratory Medical Center of the Johannes Gutenberg-University Mainz, Germany; ⁹ DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany; ⁹ DZHK (German Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany; ⁹ Institute for Clinical Chemistry and Laboratory Medical Center of the Johannes Gutenberg-University Mainz, Germany; ⁹ DZHK (German Vertical Center for Cardiovascular Research), Partner Site RhineMain, Mainz, Germany; ⁹ Institute for Clinical Chemistry and Laboratory Medical Center of the Johannes Gutenberg-University Mainz, Germany; ⁹ DZHK (Bermany), ⁹ DZHK (Development of Cardiovascular Research), Partner Site RhineMain, Mainz, Germany, ⁹ DZHK (Development of the Johannes Gutenberg-University Mainz, Germany), ⁹ DZHK (Development of Cardiovascular Research), Partner Site RhineMain, ¹ Development of the Johannes Gutenberg-University Mainz, German

Background

Thrombin, a central protease in blood coagulation with both procoagulant and anticoagulant function, regulates the activity of the coagulation cascade.¹ In addition, thrombin is one of the most potent physiological activators of platelets that are critical in cell-mediated thrombin amplification.² The tendency of a plasma sample to generate thrombin might be an important indicator of prothrombotic risk linked to cardiovascular disease (CVD), but the presence of platelets may be a critical determinant.

Aim

To investigate the clinical and laboratory determinants of thrombin generation (TG), measured in platelet rich plasma (PRP) and platelet free plasma (PFP), in individuals from the adult population-based Gutenberg Health Study (GHS).

Methods

Clinical data, standard laboratory markers and TG, investigated in both PRP (with adjusted platelet concentration of 150,000 platelets/µl) and PFP at 1pM TF, were available in 407 GHS individuals (randomly selected from the 5 year follow-up GHS cohort). The study sample shares the demographic characteristics and the distribution of traditional cardiovascular risk factors (CVRFs) and CVD with the population sample of the follow-up cohort.

Lag time, endogenous thrombin potential (ETP) and peak height were the investigated parameters of a TG curve. Multivariable linear regression analysis adjusted for age, sex, laboratory markers, antiplatelet and anticoagulant treatment was used to identify TG determinants.

Calibrated authomated thrombogram

Subjects characteristics in the study sample and the follow-up cohort

		Subsample with TG analysis (N=407)	GHS sample (N=8367)				
Sex (Women)		48.4% (197)	49.0% (4099)				
Age (years)		59.5±10.7	60.0±10.7				
BMI (kg/m²)		26.7 (24.1/30.2)	26.9 (24.2/30.2)				
	Diabetes	11.5% (47)	10.9% (909)				
Cardiovascul ar risk factors	Obesity	26.5% (108)	26.2% (2195)				
	Smoking	15.5% (63)	15.2% (1269)				
	Hypertension	54.1% (220)	55.3% (4625)				
	Dyslipidemia	47.9% (195)	45.4% (3791)				
	FH of MI/Stroke	20.4% (83)	23.7% (1980)				
Cardiovascula	r diseases	19.6% (80)	21.5% (1803)				
Antithromboti	c agents	10.1% (41)	16.2% (1354)				
An	tiplatelet agents	6.4% (26)	12.4% (1039)				
Antic	oagulant agents	3.7% (15)	3.8% (315)				
Lipid modifyin	g agents	11.1% (45)	16.2% (1358)				

The GHS sample is the follow-up sample of the first 10,000 study participants Cardiovascular diseases include: myocardial infarction, coronary artery disease, stroke, atrial fibrillation, heart failure and peripheral arterial disease. BMI, body mass index; FH of MI, family history of myocardial infarction

Results

					Clinical d	etermi	nants of TG in	platelet rid	ch plas	ma (A) and	platelet free	plasma (B)							
Α.	A. Lag time [min] (PRP)			ETP [nM.min] (PRP)			Peak heigl	Peak height [nM] (PRP)			Lag time [min] (PFP) Estimate [95%Cl] p-value			ETP [nl	I.min] (PFP)		Peak height [nM] (PFP)		
	Estimate [95%CI] p-value			Estimate [95%CI] p-value			Estimate [95%CI] p-value			_					Estimate [95%C] p-value	Estimate [95%Cl] p-value		
Diabetes	⊢ ● 1	0.49 [-0.40; 1.4]	0.28	⊢ −●−−1	-39 [-163; 84]	0.53	⊢	2.3 [-9.6; 14]	0.71	Diabetes	⊢	1.3 [0.62; 2.0]	0.00029	⊢ ●I	5.9 [-84; 96]	0.90	· •	7.5 [-8.2; 23]	0.35
– Hypertension	⊢ ●i	-0.18 [-0.79; 0.44]	0.57	⊢	-89 [-175; -2.8]	0.044	⊢ ● 1	-2.7 [-11; 5.5]	0.52	Hypertension	⊢∙	-0.058 [-0.56; 0.44]	0.82	⊢ •–1	-16 [-79; 47]	0.62	⊢ • 1	-3.9 [-15; 7.1]	0.49
Smoking	 i	-0.088 [-0.83; 0.66]	0.82	⊢ •	28 [-77; 132]	0.61	⊢	4.5 [-5.5; 14]	0.38	Smoking	⊢ ∙-1	0.083 [-0.52; 0.69]	0.79	F	-4.2 [-81; 72]	0.91	⊢ ●	-1.6 [-15; 12]	0.82
Obesity	⊢ ●(0.35 [-0.28; 0.97]	0.28	⊢	1 129 [41; 217]	0.0042		0.26 [-8.2; 8.7]	0.95	Obesity	⊢ •−1	-0.089 [-0.60; 0.42]	0.73	• ••	47 [-17; 111]	0.15	⊢ ●	— 5.0 [-6.2; 16]	0.38
Dyslipidemia	⊢ •1	0.89 [0.33; 1.5]	0.0021	⊢ •1	29 [-50; 109]	0.47	⊢ •1	-4.8 [-12; 2.8]	0.22	Dyslipidemia	⊢ ●–1	0.70 [0.24; 1.2]	0.0030		-18 [-76; 40]	0.55	⊢ ● 1	-4.2 [-14; 5.9]	0.41
- FH of MI/Stroke	⊢ •1	0.23 [-0.43; 0.90]	0.49	۱ ــــ	-9.6 [-102; 83]	0.84	⊢ • 1	-4.3 [-13; 4.6]	0.34	FH of MI/Stroke	⊢●⊣	0.23 [-0.31; 0.77]	0.41		-27 [-95; 40]	0.43	⊢ ● 1	-3.6 [-16; 8.2]	0.55
CVD	⊦●	- 1 .0 [0.23; 1.8]	0.012	⊢ ●1	-97 [-206; 12]	0.083	⊢ I	-6.9 [-17; 3.6]	0.20	CVD	⊢ ●−1	1.1 [0.48; 1.8]	0.00065		-17 [-97; 63]	0.68		– 1.1 [-13; 15]	0.87
-			-15 -5 0 5 10 1				-10 00 10 20			-200 -100 0 100 200			-20 -10 0 10 20						
	Estimate			Estimate			Estimate	~			Estimate	-		Estimate			Estimate		

Forrest plots presenting the clinical determinants of TG parameters, in an adjusted model for age, sex, cardiovascular risk factors (presented in the plot) and cardiovascular diseases (CVD), measured in platelet rich plasma (PRP, A) and platelet free plasma (PFP, B).

Laboratory determinants of TG in platelet rich plasma (A) and platelet free plasma (B)

A. PRP	Lag time [min]		ETP [nM.min]		Peak height [nM]		B. PFP	Lag time [min]		ETP [nM.m	in]] Peak height [nM]		
	Beta (95% CI)	p-value	Beta (95% CI)	p-value	Beta (95% CI)	p-value		Beta (95% CI)	p-value	Beta (95% CI)	p-value	Beta (95% CI)	p-value	
Sex (female)	0.354 (-0.204; 0.913)	0.21	-23.1 (-114; 68.2)	0.62	-6.06 (-14.9; 2.78)	0.18	Sex (female)	0.122 (-0.358; 0.601)	0.62	6.45 (-60.0; 73.0)	0.85	3.27 (-8.48; 15.0)	0.59	
Age (10 years)	-0.007 (-0.236; 0.222)	0.95	-36.3 (-73.7; 1.14)	0.058	-1.43 (-5.06; 2.19)	0.44	Age (10 years)	0.287 (0.0901; 0.485)	0.0045	-16.5 (-43.9; 10.9)	0.24	0.973 (-3.86; 5.81)	0.69	
MPV (fL)	-0.428 (-0.715; -0.141)	0.0037	12.8 (-34.0; 59.7)	0.59	4.97 (0.429; 9.52)	0.033	MPV (fL)	-0.049 (-0.295; 0.197)	0.69	7.51 (-26.6; 41.6)	0.67	-1.02 (-7.04; 5.01)	0.74	
Leukocytes (10 ⁹ /L)	-0.006 (-0.082; 0.0687)	0.87	-11.8 (-24.1; 0.474)	0.060	-0.49 (-1.68; 0.699)	0.42	Leukocytes (10 ⁹ /L)	-0.0406 (-0.105; 0.024)	0.22	-1.95 (-10.9; 6.98)	0.67	0.165 (-1.41; 1.74)	0.84	
Platelets (10 ⁹ /L)	-0.005 (-0.009; -0.0009)	0.017	0.54 (-0.148; 1.23)	0.12	0.113 (0.0466; 0.18)	0.00096	Platelets (10 ⁹ /L)	0.0008 (-0.003; 0.004)	0.65	0.237 (-0.26; 0.74)	0.36	0.022 (-0.066; 0.111)	0.62	
Erythrocytes (10 ⁹ /L)	-0.232 (-0.876; 0.411)	0.48	49.2 (-56.0; 154)	0.36	4.12 (-6.07; 14.3)	0.43	Erythrocytes (10 ⁹ /L)	-0.032 (-0.583; 0.519)	0.91	70.3 (-6.20; 147)	0.072	6.17 (-7.35; 19.7)	0.37	
Log_CRP (mg/l)	0.289 (0.063; 0.515)	0.013	66.0 (29.1; 103)	0.00051	2.67 (-0.905; 6.24)	0.14	Log_CRP (mg/l)	0.351 (0.156; 0.546)	0.00046	30.6 (3.61; 57.6)	0.027	4.07 (-0.705; 8.84)	0.096	
HbA1c (%)	-0.083 (-0.376; 0.209)	0.58	-7.18 (-55.0; 40.6)	0.77	0.911 (-3.72; 5.54)	0.70	HbA1c (%)	0.207 (-0.0438; 0.458)	0.11	-0.67 (-35.5; 34.1)	0.97	1.94 (-4.21; 8.09)	0.54	
LDL (mg/dl)	0.0069 (0.0007; 0.013)	0.029	0.97 (-0.044; 1.99)	0.062	0.028 (-0.0705; 0.127)	0.58	LDL (mg/dl)	0.0019 (-0.003; 0.007)	0.49	-0.578 (-1.32; 0.16)	0.13	-0.154 (-0.285; -0.023)) 0.022	
HDL (mg/dl)	-0.0027 (-0.019; 0.013)	0.75	0.23 (-2.48; 2.94)	0.87	-0.0747 (-0.337; 0.187)	0.58	HDL (mg/dl)	-0.014 (-0.028; 0.0001)	0.053	-1.03 (-2.99; 0.94)	0.31	-0.181 (-0.528; 0.167)	0.31	
Log_Triglycerides (mg/dl)	0.235 (-0.429; 0.900)	0.49	-17.7 (-126; 90.9)	0.75	-9.38 (-19.9; 1.14)	0.081	Log_Triglycerides (mg/dl)	-0.091 (-0.661; 0.479)	0.75	-11.7 (-90.7; 67.4)	0.77	1.34 (-12.6; 15.3)	0.85	
Antiplatelet agents	0.179 (-0.752; 1.11)	0.71	-32.8 (-185; 119)	0.67	1.42 (-13.3; 16.2)	0.85	Antiplatelet agents	-0.22 (-1.03; 0.592)	0.60	16.2 (-96.4; 129)	0.78	-5.67 (-25.6; 14.2)	0.58	
Anticoagulant agents	7.72 (6.46; 8.98)	< 0.0001	-369 (-575; -164)	0.00048	-14.1 (-34.0; 5.85)	0.17	Anticoagulant agents	5.59 (4.51; 6.67)	< 0.0001	-260 (-410; -111)	0.00071	-31.9 (-58.3; -5.48)	0.018	

Multivariable linear regression analysis of lag time, endogenous thrombin potential (ETP) and peak height as dependent variables, adjusted for age, sex, laboratory markers, antiplatelet and anticoagulant therapy in 400 GHS individuals. MPV, mean platelet volume; CRP, Creactive protein; LDL, low density lipoprotein; HDL, high density lipoprotein.

Conclusion

Our findings support that TG, particularly in PRP, relates to traditional CVRFs in a representative sample from a population-based study. Assessment of procoagulant activity in a platelet dependent manner by TG is a promising tool for assessing individual risk for CVD.

References

¹ Lane DA, Philippou H, Huntington JA. Directing thrombin. *Blood*. 2005;106:2605-2612 ²Roberts HR, Monroe DM, Oliver JA, Chang JY, Hoffman M. Newer concepts of blood coagulation. *Haemophilia : the official journal of the World Federation of Hemophilia*. 1998;4:331-334

DOI: 10.3252/pso.eu.ISTH2017.2017

